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Global Existence of Solutions for a 
Model Boltzmann Equation 
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A model recently introduced by Ianiro and Lebowitz is shown to have a global 
solution for initial data having a finite H-functional and belonging to L~(L~). 
Methods previously introduced by Tartar to deal with discrete velocity models 
are used. 
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1. I N T R O D U C T I O N  

In a recent paper, laniro and Lebowitz (1) introduced a model kinetic 
equation describing the behavior of a gas between two walls. The model is 
essentially one-dimensional and does not conserve momentum. In fact, in 
order to avoid the trivial nature of collisions in a truly one-dimensional 
Boltzmann equation, fictitious collisions that reverse the velocities of 
particles traveling in opposite directions were introduced. The main 
justification of the model appeared to be its explicit solvability in the steady 
case with boundary conditions of the Maxwell type (perfect diffusion 
according to a Maxwellian at each wall). 

In this paper we show that the model has another interesting feature: 
one can prove an existence theorem for the spatially inhomogeneous case 
and data of arbitrary size. The main tool is the extension of some results of 
Tartar (2'3) concerning a discrete velocity model to the Ianiro-Lebowitz 
(I(L) model. 

In order to avoid unnecessary complications, in this paper we assume 
that only particles with bounded speed are present and move on an 
unbounded axis. It would be nice, of course, to extend these results to 
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bounded intervals and in particular to investigate how the steady solution 
of Ianiro and Lebowitz is reached asymptotically in time, but this extension 
is not immediate. 

2. THE M O D E L  

We consider a one-dimensional system of point particles moving on an 
infinite axis. Following Ianiro and Lebowitz, (1) we assume that the particles 
undergo collisions of the usual kind (i.e., collisions preserving the total 
momentum and energy of the particles), which have no effect on the dis- 
tribution function, because they lead to an exchange of velocities between 
the particles, plus collisions that reverse the sign of the velocity of each par- 
ticle. These are assumed to occur with probability p among particles travel- 
ing in opposite directions. If the distribution function f = f ( x ,  v, t) is nor- 
malized as a number density in phase space, the evolution equation to be 
solved is 

af ~ f = p f ~  [ v - v , I H ( - v v , ) [ f ( x , - v , t ) f ( x , - v , , t )  
~t+V ax j_~ 

- f (x ,  v , ,  t) f (x ,  v, t)] dr, 

with the initial condition 

with the condition 

(2.1) 

f e L  1 (2.3) 

In Eq. (2.1) H denotes the usual Heaviside step function. 
In order to simplify the subsequent treatment, we assume that 

~b(x, v) = 0 if Iv{ > c (2.4) 

where c is a given positive constant, and look for a solution with the same 
property. A glance at the left-hand side of Eq. (2.1) indicates that this 
assumption is consistent, because no particle with speed greater than c can 
arise from collisions between particles with the same property. In other 
words, we solve the equation 

af af ~c 
- ~ + V ~ x = p  I v - v , ]  H(-vv , ) [N(x ,  - v ,  t ) f (x ,  - v , ,  t) 

c 

-- f (x ,  v , ,  t) f (x ,  v, t)] d v , -  pQ(f, f )  

- o e  < x < o o ;  [vl4c (2.5) 

f (x ,  v, 0)=O(x,  v) (2.2) 
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with the auxiliary condition (2.3) and the initial condition (2.2), where the 
initial data satisfy Eq. (2.4). 

The constant p will be omitted in the following, since it can be 
removed by scaling. 

3. P R E L I M I N A R Y  R E S U L T S  

In order to deal with Eq. (2.5), we first study the solutions of the 
simple equation 

0f 0f 
- ~  + V -~x = Q ( x ,  v , t ), O <~ t <<. T (3.1) 

with the initial and auxiliary cnditions (2.2) and (2.3). Here Q(x ,  v, t) is a 
given function. 

We denote by I an interval on the real axis and define 

D = { (x, t); t e [0, T], and there is a v e [ - c, c] 

and a t ~ [0, T] such that x -  vt E I}  

In problem, (2.1) v is just a parameter and this can be emphasized by 
writing f~(x ,  t) rather than f ( x ,  v, t). 

The solution of the above problem is explicitly found to be 

f v ( x ,  t) = (~(x - vt)  + Q , ( x  - vs, t - s) ds (3.2) 

Here we can apply some simple results obtained by Tartar (3) in the 
case ,of discrete models. The fact that v will be taken to be variable in the 
interval Ic = [ - c ,  e] rather than taking discrete values will not play any 
role here. 

Let us define the following function space: 

Fv = ( fo(x ,  t) defined on D satisfying Eq. (3.2) 

with Q~ ~ L J ( D )  and (kv ~ L t ( I ) )  (3.3) 

with norm 

IILII ~ = IIQ~IIL~(m + ]tq~l[L~(/) (3.4) 

F~ is a Banach space isometric to L I ( D )  x LI(I) [functions in Fv are L~oo(D ) 
and are only defined almost everywhere]. 

The following is a rather simple but useful result. 

822/49/5-6~14 
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If v ~ I c and f~ E F~, then there is a gv ~ La(I) such that 

[f~(x, t)l < g ~ ( x -  vt) a.e. in D 

[Ig~llzl<I> = ILLIIFv 

ProoL By Eq. (3.2) 

Ifo(x, t)l < Ir - vt)l + I Q ( x -  vt + vs, s)l ds 

Define 

(3.5) 

(O<~t<~T) (3.6) 

gv (x )  : ICv(x)l + ]Q(x+ vs, s)l ds ( x s I )  (3.7) 

Then the inequality in (3.5) is nothing else than (2.6) and the equality 
follows trivially from Eq. (3.4). 

The above result produces an estimate of the L 1 norm of the product 
of two functions f~ and fw (v r w). This is the basic result to be used in the 
proof of an existence theorem in L 1 for small data: 

k e m m a  2. I f f~eFv  and fw~Fw (wr  then f v fw~L l (O)  and 

1 
IIf~fwll Lt<m ~ < ~ - - ~  IIf~llFo IlfwllFw (3.8) 

ProoL By Lemma 1 it is enough to bound 

;o 1;o g~(x -v t )  gw(X-wt)dxdt=lv_w--~l g~(y) gw(z)dydz (3.9) 

where D' is contained in I x / .  Equation (3.8) immediately follows thanks 
to Lemma 1. 

4. G L O B A L  E X I S T E N C E  FOR S M A L L  L 1 D A T A  

We are now ready to prove the following result. 

T h e o r e m  4.1. There is a constant Co such 
LI(R • Ic) and satisfies 

c =  I1[r = ILCv[[~<~)dv~Co 
- - c  

that if ~b v6L 1= 

(4.1) 
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then there exist a unique solution f of Eq. (2.5). This solution satisfies 

i +v dr<<. tlq)vllL'(R)dv=C (4.2) 
- - e  L I ( R  x IT)  - - c  

In order to prove this result, we use the contraction mapping theorem. To 
this end, we construct a mapping from F =  L~(Fv) into F in the following 
way: Given ~b e L I and h ~ F, f =  N(h) is the solution of 

0f 0f -~+V-~x=Q(h,h ), f(x,v,t)=qk(x,v) (4.3) 

where Q(h, h) is defined in Eq. (2.5). 

Proof. By Lemma 2 of the previous section we have 

f Q(h, h) dv ~< 2 tlhjl (4.4) 
LI(D) 

i.e., the right-hand side of Eq. (4.3) is in L 1. It is clear now that a mapping 
h ~ f = N(h) is established. We want to see that this mapping is a contrac- 
tion on some closed set of F. 

In fact, Eqs. (3.4), (4.3), and (4.4) give 

Nf l IF~ < II~tl L, + ]lQ(h, h)l[Llw)~< ll~ll + 2 Ilhlt 2 (4.5) 

Then N maps the ball BR into another ball B k if 

k ~> C + 2R 2 (4.6) 

We can now bound the Lipschitz constant of N in BR. If h is another 
function in this ball and f - N ( / ~ ) ,  we have 

I I f - f i t  r ~  4R Ilk - hll (4.7) 

Now if we define Co to be 3/32 and take R = 1/8, we have a strict contrac- 
tion in a ball and the theorem is proved. In particular, Eq. (4.2) follows 
from (4.5) with h = f .  

We can now prove a simple result on the continuous dependence on 
the initial data. 

T h e o r e m  4.2. If ~b, q ;eL  1 and their norms are less than Co, the 
corresponding solutions f and f satisfy 

sup JIf-fllL1 ~< 2 II~- ~11~i (4.8) 
tc2~ 
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It is sufficient to modify (4.7) in order to take into account the 
difference in initial data. Then 

]]f -- f l lr<~ limb-q~llrt +�89 -- f l l F  (4.9) 

and (4.8) follows, given the definition of the norm in V. 

5. LOCAL E X I S T E N C E  FOR A R B I T R A R Y  L 1 D A T A  A N D  
L ~ R E G U L A R I T Y  FOR S M A L L  L 1 DATA.  
E X I S T E N C E  FOR D A T A  OF A R B I T R A R Y  SIZE 

The theorem given in the previous section is restricted to small data in 
L 1. In order to move to arbitrarily large data, we first show a uniqueness 
result for solutions not necessarily lying in BR. 

T h e o r e m  5.1. If f and f are solutions taking the same data ~b at 
t = 0, then f and f coincide in [ -  to, to] for some to > 0. 

To prove this, we note that since the left-hand side of (4.3) is in L 1, we 
can take a domain S = J x I  t (where J =  [Xo, X o + r ]  and I , =  [ - t o ,  to]) 
with measure less than 3, in such a way that if we put the initial data equal 
to zero outside J, then their norm in L 1 will be less than Co and the 
associated solutions will have norm smaller than R; thus, they coincide in S 
because of Theorem 4.1. But because of hyperbolicity, they coincide with f 
and f in the domain S, where 

= { (x, t) e S with x +_ ct in J} 

Hence f and f coincide in S. By moving x o in R, they also coincide in 
R x I ~ .  

We can now prove the following result. 

Theorem 5.2. (Local existence for L 1 data.) Let ~b~L1; then there 
exists a to > 0  such that Eq. (4.3) has a solution on the interval I - t o ,  to]. 

As in the previous theorem, we exploit hyperbolicity. In fact, we can 
find a finite number of intervals Jk (k = 1 ..... q) such that their union gives 
R and such that the restriction of ~b to each interval has L 1 norm less than 
Co. If we take initial data equal to ~b in each Jk and zero outside, we find 
solutions in a corresponding domain Sk, to be denoted by fk. If Jk and Jh 
have a nonvoid intersection, then fk  and fh must coincide on the intersec- 
tion of Sk and Sh. Since the union of all S's contains a strip [ - t o ,  to] 
(thanks to IvL ~<c), we can glue the different p s  together to obtain a 
solution in [ - t o ,  to] and the theorem is proved. 

It is now possible to prove an L ~~ result in the following form. 



Model Boltzmann Equation 1089 

T h e o r e m  5.3. There exists C~ > 0, k >  1, such that, if ~b is in the 
intersection of 1 o o  1 L a L~(L x ) and Lx. v with norm less than C1, then the 
solution is essentially bounded in Ic x R t a.e. in v and satisfies 

f IIflIL~(ZL• IJ~IIL~o(,L) de (5.1) 

Let us define M(t) to be the integral with respect to v appearing on the left- 
hand side; then M(0) will be the integral with respect to v appearing on the 
right-hand side. We want to bound M(t) in terms of M(0). 

We know that f satisfies Eq. (4.3). Accordingly, we bound the integral 

S= Iv-v,[  [ f ( x - v s ,  -v ,  t - s ) f ( x - v s ,  - v , ,  t - s )  

+ f ( x - v s ,  v, t - s ) f ( x - v s ,  v,, t - s ) ]  dr, ds (5.2) 

If we take into account the elementary inequality I v -  v,J ~< Iv + v,[ + 2 [vl 
and Lemma I, we immediately find 

S <~ ,J f ( . , - v ,  "l'z~ '[fHF + ~ f g(x, --V) dx] M(t)+ "f'[F [[f(', kJ A 
v, .)llL~ 

(5.3) 

Then a bound for f(x,  v, t) immediately follows and by integrating with 
respect to v after taking the supremum with respect to x and t, we obtain 

M(t) <~M(O) + 3M(t) IlfHg (5.4) 

But IIfllr<~2C1 [thanks to Eq. (4.2)] and hence if C~ = 1/6, we have 

M(O) 
M(t) ~ - -  (5.5) 

1 - 6 C 1  

This estimate is valid as long as the solution is bounded. Since, however, 
the bound is independent of t, we have a solution in LI(L ~) for any t. 

We are ready now to prove global existence in LI(L ~) for data of any 
size: 

T h e o r e m  5.4. If the data have a finite H-functional Ho, then the 
solution exists in LI(L ~~ without restrictions on the size of the data 
(assumed to be in the intersection of 1 ~o Lx(L v ) and L1). 

By standard arguments we prove that the solution of the previous 
theorems is nonnegative for 0 ~< t ~< T. In order to prove the theorem we 
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need to find a bound on the norm of f in LI(L ~) depending only upon T 
and the data. Let I =  [x o - c T ,  Xo + eT] and define ~O to be 

{S if x~I  (5.6) 
~ =  if x~I  

The solution h with initial data ~b will coincide with f at (xo, T) and will 
have compact support for each time t between 0 and T. In particular, there 
will be constant k such that the measure of these supports will be less than 
kT. Using the H-theorem for h, we have 

I h log h dx dv <<. Ho (5.7) 

(We remark that the rigorous proof of the H-theorem requires tedious but 
well known steps; see, e.g., Ref. 4. Hence 

f h log+h dx dv <~ Ho + 2ce lkT==- C(Ho, T) (5.8) 

We now show that we can choose an r depending only upon Ho and T 
such that 

ffx +r I = h(z, v, t) dz dv 

~< C1 uniformly for x e R, t e [0, T] (5.9) 

To this end we decompose the integral I into two parts, I1 and I2; 11 is over 
the set where h >~ N, where N is for the moment arbitrary but larger than 
unity, and 12 over the set h~<N (if the set where h = N  is of nonzero 
measure, 11 -k-12 is larger than L but this does not matter, since the 
inequality is in the right direction). Then 

1 fff+, (5.10) 11 < ~  log+hhdzdv<C(Ho, T) 
log N 

12 <<. 2cNr (5.11 ) 

If is sufficient now to choose N>~ exp[2C(H 0, T)/C1] and 

.<C~ ( 2C(Ho, T)) 
r.~-~-c ex p (5.12) Cl 

to have Eq. (5.9). 
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This means that we can apply Theorem 5.3 a finite number  of times 
(to be precise, 2cT/r times) to obtain a bound for M(t)  for 0 ~< t ~< T and 
thus existence in Lv(L ~). 

6. C O N C L U D I N G  R E M A R K S  

The result of global existence for the IL model proved in this paper 
indicates that the bounds required by global existence theorems can depend 
on tiny details of the collision model, not necessarily tied to its nonlinear 
structure. In fact, the extension of the present treatment to the actual 
Boltzmann equation, if possible, is far from trivial. 

Some of the results of the present paper  can be extended to a bounded 
domain with periodicity conditions; to this end the hyperbolic nature of the 
equation has to be exploited in a suitable fashion. 
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